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CONTRACT THEORY



MOTIVATION: INTERACTIONS AND INCENTIVES

▶ The functioning of society is largely based on interactions and incentives
between (economic) agents.
▶ Actual example: public authorities seek to incentivise individuals to limit
their contacts because their interactions contribute to the spread of the epi-
demic.

▶ Two main questions:

(i) How tomodel the behaviour of individuals and their interactions towards
the epidemic?

(ii) How can they be optimally encouraged to remain isolated in order to
limit the spread?

▶ Motivation: answering these types of questions in various situations.
▶ From a mathematical point of view:

agent behaviour ⇔ stochastic control problem;
interactions ⇔ Nash equilibrium and mean–field games;
incentives ⇔ Stackelberg equilibrium, contract theory.
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THE PRINCIPAL–AGENT MODEL

Noteworthy papers: Holmström and Milgrom [7] (1987), Sannikov [11] (2008).
▶ Analyse interactions between economic agents, in particular with asym-
metric information.

The Principal (she) initiates a contract for a period [0, T].
The Agent (he) accepts or not the contract proposed by the Principal.

The Principal must suggest an optimal contract: maximises her utility, and
that the Agent will accept (reservation utility).

Asymmetries of information:
Moral Hazard: the Agent’s behaviour is not observable by the Principal (second–
best case).
Adverse Selection: a characteristic of the Agent is unknown by the Principal
(third–best case).
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MORAL HAZARD IN CONTINUOUS–TIME

▶ Model by Holmström and Milgrom [7] (1987):

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α, in order to maximise the fol-
lowing criteria:

EPα
[
− exp

(
− RA

(
ξ −

∫ T

0
c(αt)dt

))]
.

Moral Hazard: the Principal only observes X in continuous–time.

▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent is (see [11]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs +

1
2RA

∫ T

0
Z2sd⟨X⟩s, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.

5



MORAL HAZARD IN CONTINUOUS–TIME

▶ Model by Holmström and Milgrom [7] (1987):

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α, in order to maximise the fol-
lowing criteria:

EPα
[
− exp

(
− RA

(
ξ −

∫ T

0
c(αt)dt

))]
.

Moral Hazard: the Principal only observes X in continuous–time.

▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent is (see [11]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs +

1
2RA

∫ T

0
Z2sd⟨X⟩s, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.

5



MORAL HAZARD IN CONTINUOUS–TIME

▶ Model by Holmström and Milgrom [7] (1987):

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α, in order to maximise the fol-
lowing criteria:

EPα
[
− exp

(
− RA

(
ξ −

∫ T

0
c(αt)dt

))]
.

Moral Hazard: the Principal only observes X in continuous–time.

▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent is (see [11]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs +

1
2RA

∫ T

0
Z2sd⟨X⟩s, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.

5



MORAL HAZARD IN CONTINUOUS–TIME

▶ Model by Holmström and Milgrom [7] (1987):

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α, in order to maximise the fol-
lowing criteria:

EPα
[
− exp

(
− RA

(
ξ −

∫ T

0
c(αt)dt

))]
.

Moral Hazard: the Principal only observes X in continuous–time.

▶ The contract (terminal payment) ξ can only be indexed on X.

▶ The optimal form of contracts for the Agent is (see [11]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs +

1
2RA

∫ T

0
Z2sd⟨X⟩s, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.

5



MORAL HAZARD IN CONTINUOUS–TIME

▶ Model by Holmström and Milgrom [7] (1987):

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α, in order to maximise the fol-
lowing criteria:

EPα
[
− exp

(
− RA

(
ξ −

∫ T

0
c(αt)dt

))]
.

Moral Hazard: the Principal only observes X in continuous–time.

▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent is (see [11]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs +

1
2RA

∫ T

0
Z2sd⟨X⟩s, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.

5



MORAL HAZARD IN CONTINUOUS–TIME

▶ Model by Holmström and Milgrom [7] (1987):

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α, in order to maximise the fol-
lowing criteria:

EPα
[
− exp

(
− RA

(
ξ −

∫ T

0
c(αt)dt

))]
.

Moral Hazard: the Principal only observes X in continuous–time.

▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent is (see [11]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs +

1
2RA

∫ T

0
Z2sd⟨X⟩s, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.

5



RECENT EXTENSIONS

▶ Volatility control. Cvitanić, Possamaï, and Touzi [4] (2018)

(i) identify a class of contracts, offered by the principal, that are revealing:
the agent’s optimal response can be easily calculated;

(ii) prove that this restriction is without loss of generality, using second–
order BSDE (2BSDE) ;

(iii) solve the principal’s problem, which is now standard.

▶ Many agents. For example: Élie and Possamaï [5] (2019), and Élie, Mastrolia,
and Possamaï [6] (2018) for a continuum of agents.

▶ Use these recent developments to:

(i) identify the optimal incentives within a hierarchy;
(ii) improve electricity demand management.
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INCENTIVES WITHIN A HIERARCHY



MOTIVATIONS

▶ Hierarchy : power entity at the top and subsequent levels of power below.

▶ Dominant structure in contemporary society.
▶ Raises many questions: efficiency, cost, optimal size... Originally intro-

duced by Knight [8] (1921).

▶ Incentives within a hierarchy. Link with multi–agents problems, to model
information asymmetries : Stiglitz [12] (1975) and Mirrlees [9] (1976).

▶ Discrete–time models, usually a single period: Sung [13] (2015).

▶ Answer two questions:

(i) Interest of continuous–time?
(ii) ‘Natural’ example where an agent controls the volatility?
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THE ONE–PERIOD MODEL OF SUNG

Sung [13] (2015) – Pay for performance under hierarchical contracting.
▶ Hierarchical principal–agent model, with one periode and moral hazard.

▶ Choice of a single-period model: “For ease of exposition and without loss
of generality, we formulate a discrete–time model which is analogous to its
continuous–time counterpart” (Sung [13] (2015)).

The principal (she) is risk–neutral, and represents the investors of a com-
pany.

The agents are the n+ 1 workers, with CARA utility. Each agent i ∈ {0, . . . ,N}
produce a random outcome Xi, by carrying out his own task:

Xi = αi + σiWi, Wi ∼ N (0, 1) i.i.d.

The effort of the agent i is represented by αi, and induces a quadratic cost:
ci(αi) = |αi|2/2ki.
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HIERARCHY: SEQUENCE OF STACKELBERG EQUILIBRIUM

Principal

Manager

Agent 1 Agent 2 . . . Agent n− 1 Agent n

ξ0

ξ1 ξ2 ξn−1 ξn

Figure: Sung’s model
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HIERARCHY AND MORAL HAZARD

▶ A manager (i = 0) is designated as an intermediary between the principal
and the agents.

(i) Each agent i ∈ {1, . . . ,n} makes an effort αi to increase his own output
Xi in exchange for a compensation ξi.

(ii) The manager does not observe the effort αi of the i–th agent, but only
his outcome Xi, for i ∈ {1, . . . ,n}. He

• improves his own outcome X0 through an effort α0 ;
• and define the contracts for the agents.

(iii) The principal observes only the net profit of the hierarchy :

ζ :=
n∑

i=0

Xi −
n∑
i=1

ξi.

▶ The contract ξ0 for the manager can only be indexed on ζ .

▶ Interconnected principal–agent problems.
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SOLVING THE MANAGER–AGENTS PROBLEM

In this one-period model, the outcome processes are Gaussian...
▶ No optimal contracts in this case (see the notion of ‘forcing contracts’ by
Mirrlees [10] (1999)).

▶ Nevertheless, in continuous–time, linear contracts are optimal, when only
the drift is controlled (see [7]).

▶ Sung limits the study to linear contracts, and states that this restriction
is “without loss of generality, as long as our results are interpreted in the
context of continuous–time models as in Holmström et Milgrom [7]”:

ξi = ξi0 − sup
a∈R

{
aZi − ci(a)

}
+ ZiXi + 1

2R
i(Zi)2Var(Xi),

where Zi is a parameter chosen by the manager.
▶ The agent’s optimal effort is the one which maximise his Hamiltonian: kiZi.
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SOLVING THE PRINCIPAL–MANAGER PROBLEM

▶ Recall that the manager’s contract can only be indexed on the variable ζ .
▶ Given the formulation of the manager’s problem, ζ is the only state variable
of his problem.

▶ Given the optimal effort of the agents, the manager controls the mean, but
also the variance of ζ :

ζ = α0 + σ0W0 −
n∑
i=1

(
ξi0 − kiZi + ci

(
kiZi

)
+

1
2R

i(Ziσi)2)+
n∑
i=1

(
1− Zi

)
σiWi.

▶ The variance of ζ is not observed by the principal, and therefore the con-
tract for the manager cannot be indexed on it:

ξ0 = ξ00 −H0(Z0) + Z0ζ + �������XXXXXXX
1
2R

0(Z0)2Var(ζ),

▶ In continuous–time, when the variance is controlled, linear contracts are
not optimal (Cvitanić, Possamaï, and Touzi [4] (2018))...
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A SIMILAR FRAMEWORK BUT IN CONTINUOUS–TIME

The i–th agent

▶ controls the drift of the process Xi with dynamic dXit = αi
tdt+ σidWi

t;
▶ receives a terminal payment ξi, function of (Xi)t∈[0,1].

The manager

▶ controls the drift of a process X0 with dynamic dX0t = α0
t dt+ σ0dW0

t ;
▶ chooses the contracts ξi, for i ∈ {1, . . . ,n};
▶ receives a terminal payment ξ0.

The principal observes in continuous–time the process ζ :

ζt =
n∑

i=0

Xit −
n∑
i=1

ξit, t ∈ [0, 1],

and indexes the contract ξ0 for the manager on this process.
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SOLVING THE FIRST STACKELBERG EQUILIBRIUM

▶ Given a contract ξi, the i–th agent chooses an effort αi in order to maximise
the following utility:

EPi
[
− exp

(
− Ri

(
ξi −

∫ 1

0
ci(αi

t)dt
))]

.

Hypothesis: ξi can only be indexed on the agent’s outcome Xi.
▶ The optimal form of contracts is (see [7] or [11]):

ξi = ξi0 −
∫ 1

0
Hi(Zis)ds+

∫ 1

0
ZisdXis +

1
2R

i
∫ 1

0

(
Zis
)2d⟨Xi⟩s, (2)

where

(i) Zi is a process chosen by the manager;
(ii) Hi(z) = supa∈R{az− ci(a)} is the agent’s Hamiltonian.

▶ The optimal effort of the agent is kiZit, and it is possible to compute the
dynamics of Xi and ξi under this optimal effort.
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SOLVING THE SECOND STACKELBERG EQUILIBRIUM

▶ Given a contract ξ0, the manager chooses α0 and Zi, for i = 1, . . . ,n, in order
to maximise:

EP0
[
− exp

(
− R0

(
ξ0 −

∫ 1

0
c0(α0

t )dt
))]

.

Hypothesis: the principal observes only ζ , which satisfies:

dζt = dX0t +
n∑
i=1

(
kiZit −

1
2
(
Zit
)2(ki + Ri(σi)2))dt+ σi

n∑
i=1

(
1− Zit

)
dWi

t.

▶ The manager controls the volatility of his state variable ζ .
▶ The optimal of contract is (Cvitanić, Possamaï, and Touzi [4] (2018)):

ξ0 = ξ00 −
∫ 1

0
H0(Zs, Γs)ds+

∫ 1

0
Zsdζs +

1
2

∫ 1

0

(
Γs + R0Zs2

)
d⟨ζ⟩s. (3)

▶ Explicit forms for the manager’s optimal controls and dynamics for ζ and
ξ0 at the optimum.
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SOLVING THE PRINCIPAL’S PROBLEM

▶ After identifying the form of the revealing contracts, the principal problem
is a standard stochastic control problem:

V0 = sup
Z,Γ

EP⋆[ζT − ξ0
]
.

▶ Optimal controls are (Z⋆, Γ⋆) where Γ⋆ := −R0(Z⋆)3, with Z⋆ solution of a
maximisation problem.

▶ Main result: Γ⋆ is different from the one imposed by Sung.

▶ Indeed, in order to find the linear contracts considered by Sung, one has
to set Γ = −R0Z2.

▶ Difference with the one–period model lies: in continuous time, the prin-
cipal observes the quadratic variation of ζ .

▶ Shows the need to rigorously study continuous–time, and therefore to
use second–order BSDEs.
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EXTENSIONS

▶ This model can be extended to a more general framework, in terms of:

(i) hierarchy;
(ii) output dynamics, utility and costs functions;
(iii) other forms of reporting ζ ;
(iv) adding a ‘capacity’ parameter for the manager.

▶May be interesting to look at more general contracts, indexed on the results
of others:

ξi := ξi0 −
∫ T

0
Hi(s, Xis,Zs

)
ds+

n∑
ℓ=1

∫ T

0
ZℓsdXℓs +

1
2

∫ T

0

(
Ri(Zis)2 + Γs

)
d⟨Xi⟩s,

where Z =
(
(Zj)nj=1, Γ

)
is chosen by the manager.

▶ What would happen in a mean–field framework?
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TOWARDS A MEAN–FIELD OF AGENTS



MOTIVATION: ELECTRICITY DEMAND MANAGEMENT

▶ Very few electricity storage solutions: supply–demand balance at all times
⇒ Acting on the supply side?

▶ Problem : Inflexible (or expensive) production and random renewable en-
ergies.

▶ Solution : Demand management, facilitated by the development of smart
meters. Tariff offers, price signals...
Aïd, Possamaï, and Touzi [1] (2019) – Principal–agent model with volatility con-
trol, to improve the consumer’s response to the contract.
▶ Uses the results of Cvitanić, Possamaï, and Touzi [4] (2018).

▶ Contribution, with Elie, Mastrolia and Possamaï: extension of [1] to a model
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THE REPRESENTATIVE CONSUMER

Classic MFG framework: all agents are identical.

▶ Study of a ‘normal’ consumer, who has no impact on total consumption:
the representative agent (he).

▶ His deviation from his usual consumption is:

Xt = x0

−
∫ t

0
αs · 1dds+

∫ t

0
σ(βs) · dWs +

∫ t

0
σ◦dW◦

s , t ∈ [0, T].

(4)

where

• α, effort to reduce the mean of his consumption;
• β, effort to reduce the volatility ;
• W, d–dim. MB, representing the randomness specific to the agent;
• W◦, uni–dim. MB, representing the noise common to all agents.
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AGENT’S PROBLEM

▶ Optimisation problem of the representative consumer:

VA
0(ξ) := sup

ν=(α,β)

EP
[
UA

(
ξ −

∫ T

0

(
c(νt)− f(Xt)

)
dt
)]

, (5)

where c is the cost of effort, f represents the agent’s preference towards his
consumption, and UA(x) = −e−RAx.

▶ Aïd, Possamaï, and Touzi [1] (2019): Contract indexed on X, and its quadratic
variation ⟨X⟩, through a process (Z, Γ).
▶ The principal chooses (Z, Γ) in order to maximise her profit.

▶ Principal – multi–agents models : the principal can take advantage of the
supplementary information available to her (see [5, 6]).
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A NEW FORM OF CONTRACTS

▶ In our case, the Principal can compute the distribution, conditional to com-
mon noise, of the deviation of the other consumers, denoted µ̂.

⇒ New form of contract: ξ(X, µ̂).

▶ Using the ‘chain rule with common noise’ by Carmona and Delarue [3]
(2018), ‘revealing contracts’ should be of the form:

ξT = ξ0 −
∫ T

0
H(Xs, ζs, α̂⋆

s , µ̂s)ds +

∫ T

0
ZsdXs +

1
2

∫ t

0

(
Γs + RAZ2s

)
d⟨X⟩s

+

∫ T

0
Êµ̂s

[
Zµs (X̂s)dX̂s

]
+

∫ T

0
f̃
(
µ̂s, Zs, Zµs

)
ds,

• ζt =
(
Zt, Zµt , Γt

)
, parameters optimised by the principal,

• α̂⋆, the optimal effort of the others on the drift of their deviation,
• X̂, the deviation of others;
• Êµ̂, expectation under µ̂ (with respect to the common noise).
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MAIN RESULTS

Equilibrium between agents: Given a contract of the previous form, indexed
by (Z, Zµ, Γ),

▶ the optimal effort of the representative agent is the same as in [1] and
does not depend on Zµ or µ̂;

▶ mean–field equilibrium: the optimal efforts are the same for all
consumers, and thus X̂ L∼ X and µ̂ = µX;

Principal’s problem :

▶ this form of contract, where the principal chooses ζ := (Z, Γ, Zµ), is
without loss of generality ⇔ second–order 2BSDE of the mean–field
type;

▶ from the Principal’s point of view, the contract ξ is a function of X and
µX, the conditional law of X. ⇔ Problem of McKean–Vlasov type.
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INTERPRETATION OF THE OPTIMAL CONTRACT

▶ Let X◦ be the deviation without common noise (corrected for climatic haz-
ards) :

dX◦t = −α⋆(Z⋆t )dt+ σ⋆(Γ⋆
t ) · dWt.

▶ Rewriting of the contract: indexed on X◦ and W◦:

ξT = ξ0 −
∫ T

0
H
(
Xs, ζ⋆s

)
ds+

∫ T

0
Z⋆s dX◦s +

1
2

∫ T

0

(
Γ⋆
s + RA

∣∣Z⋆s ∣∣2)d⟨X◦⟩s

+ RPσ
◦
∫ T

0
f(s, µX)dW◦

s +
1
2RAR2

P
∣∣σ◦∣∣2 ∫ T

0

∣∣f(s, µX)
∣∣2ds.

▶ Risk–neutral case (RP = 0)⇒ Classic contract for drift and volatility control,
indexed on X◦, the part of the deviation that is actually controlled by the agent.
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CONCLUSION

Theoretical contribution: Extension of PA problems with volatility control to
a multitude / continuum of agents, by developing natural extensions of the
2BSDE theory.

Applications:

▶ modelling of interactions and incentives in an organisation;
▶ demand–response management;
▶ control of an epidemic (see Aurell, Carmona, Dayanikli, and Lauriere [2]

(2020));
▶ finance, insurance...
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